As regular CFZ-watchers will know, for some time Corinna has been doing a column for Animals & Men and a regular segment on On The Track... particularly about out-of-place birds and rare vagrants. There seem to be more and more bird stories from all over the world hitting the news these days so, to make room for them all - and to give them all equal and worthy coverage - she has set up this new blog to cover all things feathery and Fortean.

Thursday 15 December 2016

The song of silence: Innate mechanism for birds hearing their own species is based on the silence




Date: December 12, 2016
Source: Okinawa Institute of Science and Technology (OIST) Graduate University

Like humans learning to speak, juvenile birds learn to sing by mimicking vocalizations of adults of the same species during development. Juvenile birds preferentially learn the song of their own species, even in noisy environments with a variety of different birdsongs. But how they can recognize their species' song has, until now, remained a mystery. In a collaborative study, neuroscientists and a physicist at the Okinawa Institute of Science and Technology Graduate University (OIST) have uncovered an innate mechanism for species identification based on the silent gaps between birdsong syllables.

"We co-designed an experiment that works within the constraints of neuroscience while satisfying the requirements of physics," says Professor Mahesh Bandi, head of the Collective Interactions Unit at OIST.

Dr. Makoto Araki and Professor Yoko Yazaki-Sugiyama of OIST's Neuronal Mechanism for Critical Period Unit and Professor Bandi performed a cross-fostering experiment in which juvenile zebra finches were raised by Bengalese finch foster parents to examine how their birdsong develops under the tutoring of a different species. Birdsong is comprised of stereotypical repeats of a few syllables, called 'song motifs', in which syllables are separated by silent gaps. The findings, published in Science, reveal that the fostered zebra finches learned morphologies of Bengalese finch syllables, including syllable duration, but transposed onto zebra finch silent gap patterns. This suggests that temporal gaps between syllables are innate, while syllable morphology can be learned.

No comments:

Post a Comment