April 10, 2017 by Taylor Kubota
The wind rushing between skyscrapers is a substantial hurdle for anyone interested in operating small drones in urban areas. Yet, pigeons seem to have little trouble maneuvering through turbulent city skies. With sights set on unlocking the secrets of birds' smooth sailing, researchers at Stanford University have developed a new method for recording the shape of birds' wings during flight.
"We're trying to figure out how birds are capable of flying so well in these complex, turbulent environments and a lot of that comes from how they deform the shape of their wings, left versus right, to adjust to gusts quickly," said David Lentink, an assistant professor of mechanical engineering.
Birds morph their wings through an incredible range of shapes, but until now we've known little about the angle, twist and asymmetries of each wing beat. After seven years of development, the Lentink lab may have figured out how to more closely observe birds' morphing skills. They've created a new way of automatically recording wing shape that works at high speeds and results in high-definition 3-D reconstructions. Details of their work are published in the Mar. 27 issue Journal of Experimental Biology.
Recording animal movement
Current techniques for recording animals in motion often rely on tracking markers attached to the animal or features of the animal like stripes or spots, an approach that can't directly or automatically reconstruct an entire wing surface at high resolution. Other methods, which use patterned light, are more easily automated but are too slow to record bird flight.
The Lentink lab has built on previous structured-light techniques, but their version automatically resolves body shape changes at high speed and in high resolution.
"The great thing about this system is it's the first fully-automated, high-speed reconstruction of birds in the world," said Marc Deetjen, a graduate student in the Lentink lab and senior author of the paper.
Read more at:
The wind rushing between skyscrapers is a substantial hurdle for anyone interested in operating small drones in urban areas. Yet, pigeons seem to have little trouble maneuvering through turbulent city skies. With sights set on unlocking the secrets of birds' smooth sailing, researchers at Stanford University have developed a new method for recording the shape of birds' wings during flight.
"We're trying to figure out how birds are capable of flying so well in these complex, turbulent environments and a lot of that comes from how they deform the shape of their wings, left versus right, to adjust to gusts quickly," said David Lentink, an assistant professor of mechanical engineering.
Birds morph their wings through an incredible range of shapes, but until now we've known little about the angle, twist and asymmetries of each wing beat. After seven years of development, the Lentink lab may have figured out how to more closely observe birds' morphing skills. They've created a new way of automatically recording wing shape that works at high speeds and results in high-definition 3-D reconstructions. Details of their work are published in the Mar. 27 issue Journal of Experimental Biology.
Recording animal movement
Current techniques for recording animals in motion often rely on tracking markers attached to the animal or features of the animal like stripes or spots, an approach that can't directly or automatically reconstruct an entire wing surface at high resolution. Other methods, which use patterned light, are more easily automated but are too slow to record bird flight.
The Lentink lab has built on previous structured-light techniques, but their version automatically resolves body shape changes at high speed and in high resolution.
"The great thing about this system is it's the first fully-automated, high-speed reconstruction of birds in the world," said Marc Deetjen, a graduate student in the Lentink lab and senior author of the paper.
Read more at:
No comments:
Post a Comment