As regular CFZ-watchers will know, for some time Corinna has been doing a column for Animals & Men and a regular segment on On The Track... particularly about out-of-place birds and rare vagrants. There seem to be more and more bird stories from all over the world hitting the news these days so, to make room for them all - and to give them all equal and worthy coverage - she has set up this new blog to cover all things feathery and Fortean.

Friday, 9 September 2016

Bird bugs shed new light on malaria infection

Study shows how parasites co-infect

Date: August 31, 2016
Source: Griffith University

The Griffith University study investigated parasite interactions in wild birds and found they are a crucial indicator of malaria infection risk. The study "Co-infections and environmental conditions drive the distributions of blood parasites in wild birds" has been published in the Journal of Animal Ecology.

An Environmental Futures Research Institute team, led by Dr Nicholas Clark, captured hundreds of wild birds across the South Pacific archipelago of New Caledonia and examined them for malaria and parasitic worms. Detailed DNA screening methods were used to distinguish different parasite strains in the animals.

They found that not only the bird's habitat but also the interactions between parasites can impact a bird's risk of malaria infection.

"Finding that interactions among parasite species may play important roles in determining a host's infection risk means that we need to look in more detail at how malaria and parasitic worms interact," says Dr Sonya Clegg, senior author of the study from Oxford University and adjunct researcher at Griffith Universities Environmental Futures Research Institute.

"It may advance our understanding of parasitic disease in both humans and wildlife."

The research revealed nine genetic strains of avian malaria as well as three strains of microfilaria, a parasitic worm that is similar to heartworm in dogs and filarial worms in humans. Malaria and other vector-transmitted parasites can be just as harmful to bird health as they are to humans.

Overall, researchers found that co-infections occurred in 36 per cent of infected birds.

"Studying the distribution of parasites in wildlife species is a fundamental first step to understand potential threats and to manage disease risks that may cause wildlife declines. By recording parasites in four bird species on different islands and in different vegetation types, we could identify factors that are most influential in driving a bird's risk of infection," says Dr Clark.

No comments:

Post a Comment