As regular CFZ-watchers will know, for some time Corinna has been doing a column for Animals & Men and a regular segment on On The Track... particularly about out-of-place birds and rare vagrants. There seem to be more and more bird stories from all over the world hitting the news these days so, to make room for them all - and to give them all equal and worthy coverage - she has set up this new blog to cover all things feathery and Fortean.

Monday 11 February 2019

Molecular analysis of anchiornis feather gives clues to origin of flight


Date:  January 28, 2019
Source:  North Carolina State University
An international team of researchers has performed molecular analysis on fossil feathers from a small, feathered dinosaur from the Jurassic. Their research could aid scientists in pinpointing when feathers evolved the capacity for flight during the dinosaur-bird transition.
Anchiornis was a small, feathered, four-winged dinosaur that lived in what is now China around 160 million years ago -- almost 10 million years before Archaeopteryx, the first recognized bird. A team of researchers from the Nanjing Institute of Geology and Paleontology, North Carolina State University, and the University of South Carolina analyzed Anchiornis feathers to see how they differed at the molecular level from those of younger fossil birds and modern birds.
"Modern bird feathers are composed primarily of beta-keratin (β-keratin), a protein also found in skin, claws, and beaks of reptiles and birds. Feathers differ from these other β-keratin containing tissues, because the feather protein is modified in a way that makes them more flexible," says Mary Schweitzer, professor of biological sciences at NC State with a joint appointment at the North Carolina Museum of Natural Sciences and co-author of a paper describing the research.
"At some point during the evolution of feathers, one of the β-keratin genes underwent a deletion event, making the resultant protein slightly smaller. This deletion changed the biophysics of the feather to something more flexible -- a requirement for flight. If we can pinpoint when, and in what organisms, that deletion event occurred, we will have a better grasp on when flight evolved during the transition from dinosaurs to birds."

No comments:

Post a Comment