As regular CFZ-watchers will know, for some time Corinna has been doing a column for Animals & Men and a regular segment on On The Track... particularly about out-of-place birds and rare vagrants. There seem to be more and more bird stories from all over the world hitting the news these days so, to make room for them all - and to give them all equal and worthy coverage - she has set up this new blog to cover all things feathery and Fortean.

Thursday, 28 November 2019

Researchers show how feathers propel birds through air and history

NOVEMBER 27, 2019


Birds of a feather may flock together, but the feathers of birds differ altogether.

New research from an international team led by USC scientists set out to learn how feathers developed and helped birds spread across the world. Flight feathers, in particular, are masterpieces of propulsion and adaptation, helping penguins swim, eagles soar and hummingbirds hover.

Despite such diversity, the feather shares a common core design: a one-style-fits-all model with option trims for specialized performance. This simplicity and flexibility found in nature holds promise for engineers looking for better ways to build drones, wind turbines, medical implants and other advanced materials.

Those findings, published today in Cell, offer an in-depth look at the form and function of a feather based on a comparative analysis of their physical structure, cellular composition and evolution. The study compares feathers of 21 bird species from around the world.

"We've always wondered how birds can fly in so many different ways, and we found the difference in flight styles is largely due to the characteristics of their flight feathers," said Cheng-Ming Chuong, the study's lead author and a developmental biologist in the Department of Pathology at the Keck School of Medicine of USC. "We want to learn how flight feathers are made so we can better understand nature and learn how biological architecture principles can benefit modern technology."

To gain a comprehensive understanding of the flight feather, Chuong formed a multi-disciplinary international team with Wen Tau Juan, a biophysicist at the Integrative Stem Cell Center, China Medical University in Taiwan. The work involved experts in stem cells, molecular biology, anatomy, physics, bio-imaging, engineering, materials science, bioinformatics and animal science. The bird species studied include ostrich, sparrow, eagle, chickens, ducks, swallow, owl, penguin, peacock, heron and hummingbird, among others.

No comments:

Post a Comment