As regular CFZ-watchers will know, for some time Corinna has been doing a column for Animals & Men and a regular segment on On The Track... particularly about out-of-place birds and rare vagrants. There seem to be more and more bird stories from all over the world hitting the news these days so, to make room for them all - and to give them all equal and worthy coverage - she has set up this new blog to cover all things feathery and Fortean.

Wednesday, 20 January 2016

How birds learn through imitation

Long-term goal: Guide research into how people might re-learn skills after brain injury

Date:January 14, 2016

Precise changes in brain circuitry occur as young zebra finches go from listening to their fathers' courtship songs to knowing the songs themselves, according to a study led by neuroscientists at NYU Langone Medical Center and published online in aScience cover report on January 14.

The study reveals how birds learn songs through observation and practice, and the authors hope the work will guide future research into how patients with brain injuries might reacquire the ability to learn skilled behaviors like speech.

"While we have known for decades that adolescent songbirds only learn their songs if exposed to a tutor, we believe our study is the first to detail changes in nerve networks that make this mastery possible in maturing brains," says senior study investigator Michael Long, PhD.

"Our results show that finch song learning reflects a 'dance' inside the brain's vocal control center between nerve cells that capture information as the bird listens and those that direct muscle movement as it sings," says Long, an assistant professor of neuroscience at NYU Langone.

In the current study, led by Daniela Vallentin, PhD, and Georg Kosche in the NYU Neuroscience Institute, the research team found that early in adolescence, just listening to a father's song turns on the same brain cell networks that the young bird will use later to sing the song once learned.

A second result revolves around a set of nerve cells in the brain -- inhibitory interneurons -- which dampen the activity of surrounding nerves to sculpt sensory input into function. Researchers found that interneurons suppress the impact of each note in a father's song as soon as it is learned, "locking" it into the younger bird's memory piece by piece.

No comments:

Post a Comment